Skip to content

🛣[Deep Learning]Stanford CS224w:Machine Learning with Graphs


想说的话🎇

🔝课程网站:http://web.stanford.edu/class/cs224w/

👀一些资源: B站精讲:https://www.bilibili.com/video/BV1pR4y1S7GA/?spm_id_from=333.337.search-card.all.click&vd_source=280e4970f2995a05fdeab972a42bfdd0

https://github.com/TommyZihao/zihao_course/tree/main/CS224W

Slides: http://web.stanford.edu/class/cs224w/slides

Geometric Graphs


A geometric graph \(G=(A,S,X)\) is a graph where each node is embeddedd in \(d\)-dimensional Euclidean space:

  • \(A\): an \(n \times n\) adjacency matrix

  • \(S \in \mathbb{R}^{n \times f}\): scalar features

  • \(X \in \mathbb{R}^{n \times d}\): tensor features(e.g.,coordinates)

Geometric GNNs

  • Invariant GNNs for learning invariant scalar features

  • Equivariant GNNs for learning equivariant tensor features

Invariant GNNs: SchNet